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Abstract—Linear discriminant analysis has been incorporated
with various representations and measurements for dimension
reduction and feature extraction. In this paper, we propose two-
dimensional quaternion sparse discriminant analysis (2D-QSDA)
that meets the requirements of representing RGB and RGB-D
images. 2D-QSDA advances in three aspects: 1) including sparse
regularization, 2D-QSDA relies only on the important variables,
and thus shows good generalization ability to the out-of-sample
data which are unseen during the training phase; 2) benefited
from quaternion representation, 2D-QSDA well preserves the
high order correlation among different image channels and
provides a unified approach to extract features from RGB and
RGB-D images; 3) the spatial structure of the input images is re-
tained via the matrix-based processing. We tackle the constrained
trace ratio problem of 2D-QSDA by solving a corresponding
constrained trace difference problem, which is then transformed
into a quaternion sparse regression (QSR) model. Afterward, we
reformulate the QSR model to an equivalent complex form to
avoid the processing of the complicated structure of quaternions.
A nested iterative algorithm is designed to learn the solution of
2D-QSDA in the complex space and then we convert this solution
back to the quaternion domain. To improve the separability of
2D-QSDA, we further propose 2D-QSDA, using the weighted
pairwise between-class distances. Extensive experiments on RGB
and RGB-D databases demonstrate the effectiveness of 2D-QSDA
and 2D-QSDA,, compared with peer competitors.

Index Terms—Discriminant analysis, dimension reduction,
quaternion, sparse feature extraction, RGB image, RGB-D image

I. INTRODUCTION

INEAR discriminant analysis (LDA) [1] is a classical
supervised method for dimension reduction and feature
extraction. It essentially learns a discriminant subspace where
the separability of different projected classes is maximized.
Compared with principle component analysis (PCA) [2], LDA
takes the class label of the data into consideration. It extracts
the discriminant information while ignoring the components
that are useless for class separability.
LDA assumes that samples are linearly separable. However,
this assumption would probably fail in practical scenarios
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when the data are of high-dimensionality [3]. To solve this
problem, the works in [4], [5] exploited different intra-class
geometric measures while preserving the inter-class discrim-
ination. They can learn effective low-dimensional subspace
from the high-dimensional ambient space. kernel discriminant
analysis (KDA) [3] and individualized KDA (IKDA) [6]
adopted the kernel trick such that the linearly inseparable input
can be cast into a high-dimensional or infinite-dimensional
feature space where the input data are linearly separable.
When being applied to image data, these methods necessitate
the vectorization of input samples and suffer from the high
computation and memory costs for constructing covariance
matrices from long vectors. Another intrinsic drawback is that
they ignore the spatial structure of the input images. Two-
dimensional LDA (2D-LDA) [7] solves these limitations by
extracting features from 2D image matrices.

Nowadays, color images have dominated practical appli-
cations [8]. Moreover, with the advance of modern cameras,
RGB-D images also become popular and the complementary
nature of the depth and color information creates new op-
portunities for computer vision [9]. However, most methods
were designed for gray-scale images. When being applied
to RGB/RGB-D images, they simply treat different image
channels independently, failing to consider the cross-channel
correlation. A practical solution is to concatenate the multiple
channels into larger vectors or matrices. Nevertheless, the
concatenation model captures only the pairwise correlation
between image channels, and thus, still suffers performance
degradation. Since a multi-channel (e.g., RGB, RGB-D) image
is not a simple combination of scalars but rather a vector-
valued array, it is important to encode the whole structure of
the array to preserve the high order cross-channel correlation.
In this respect, the limitation of the concatenation model
is derived from the fact that it contains only a fraction
of the unfolding matrices which are needed to completely
represent a vector-sensor array [10]. To address this issue,
tensor representation (TR) [11] and quaternion representation
(QR) [12]-[15] were utilized to represent RGB and RGB-D
images. Tensor discriminant analysis (TDA) [11] was proposed
by representing images as third-order tensors. The quaternion
is a four-dimensional hyper-complex number system for repre-
senting multi-channel signals which exhibit complex coupling
across channels. It can encode the cross-channel relationship
of color images, and has been widely used in the literature
[10], [16], [17], [17]. Based on QR, quaternion discriminant
analysis (QDA) [18] was proposed. It converts color images
into high-dimensional quaternion vectors and endures a high
computation cost and loses the spatial structure of images.
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Considering practical scenarios, the existence of outliers
[19] in the training set or the out-of-sample data in the
testing set which are unseen during the training phase [20]
always degrades the recognition performance. To alleviate
these effects, many algorithms were proposed by exploiting
the 1;-norm measurement [21] either on the objective functions
(robust algorithms) or as penalty terms (sparse algorithms).
Representatives are 2D-LDA based on {;-norm (2D-LDA-L1)
[19] and sparse tensor discriminant analysis (STDA) [22].
However, due to the limited representation capacity of mod-
eling the high order cross-channel relationship, those methods
are inadequate in processing RGB and RGB-D images.

Mathematically, the discriminant-based dimension reduction
methods end with solving a Trace Ratio problem in which
two partially coupled objectives are simultaneously optimized.
They take the form of maximizing the separability of different
projected classes while minimizing the distances of within-
class samples. Since the trace ratio problem does not have a
closed-form solution, it is commonly transformed into a Ratio
Trace problem [1], [7]. However, the solution of the ratio trace
formulation may deviate from the original objective, and thus,
is inexact [23]. Pioneer works proved that an iterative Trace
Difference formulation can be exploited to solve the ratio trace
problem [23]. Yet, how to efficiently solve it with additional
constraints is an ongoing work.

Based on these observations, this paper presents two-
dimensional quaternion sparse discriminant analysis (2D-
QSDA) to extract sparse discriminant features directly from
2D image matrices and proposes an elegant procedure to solve
2D-QSDA. 2D-QSDA naturally takes advantage of QR and
2D-LDA such that it well preserves the high order cross-
channel correlation and the spatial structure of images and
is computationally efficient. The key ingredient of 2D-QSDA
is the sparsity constraints imposed on the projection vectors,
which is a trade-off between the original trace ratio function
and the sparsity level of project basis. As a result, it improves
the generalization ability of 2D-QSDA and makes it robust to
the unseen data. In contrast to QDA that can be solved via
quaternion eigen-decomposition (QED), 2D-QSDA is formu-
lated as a constrained trace ratio problem and no off-the-shelf
tools can be directly applied to solve it. In this work, we first
rewrite 2D-QSDA to a constrained trace difference problem,
then convert it to a quaternion sparse regression model, and
design a nested iterative scheme to find the solution.

Besides, classical discriminant analysis methods find a sub-
space where the between-class distance of projected classes
is maximized while the within-class distance is minimized.
Essentially, they impose equal weights to all class pairs [24].
However, this brings problems since the final between-class
separability is dominated by the class pairs with large between-
class distances, whereas those class pairs with small between-
class distances are more difficult to be correctly classified
and should be properly treated. Considering this problem, we
propose 2D-QSDA,, using the weighted pairwise between-
class distances, such that the class pairs with small between-
class distances are assigned with relatively large weights to
well separate these challenging class pairs. Our contributions
are listed as follows.

« We propose a novel quaternion sparse regression (QSR)
model to solve the constrained trace difference problem
of 2D-QSDA. Including sparse regularization, 2D-QSDA
can correctly identify the important variables and ignore
the less important ones. Therefore, it is generalizable to
classify the data that are unseen during the training phase.

» Without sparsity constraints, the QSR model reverts to
a quaternion ridge regression (QRR) model. We mathe-
matically prove that the solution of this QRR model is
equivalent to that of two-dimensional QDA. This verifies
the validity of integrating sparse regularization into the
QRR model to construct the QSR model of 2D-QSDA.

o To solve 2D-QSDA, we reformulate the QSR model to
an equivalent complex form to avoid the complicated
operations of quaternion derivations. We then design a
nested iterative algorithm for optimization, in which a
novel sub-algorithm is devised for sparse regularization
via the complex-valued alternating direction method of
multipliers (complex ADMM). Moreover, a fast complex
ADMM algorithm is presented by incorporating a con-
tinuation scheme, which is crucial to convergence.

« To improve the separability of 2D-QSDA, we introduce
2D-QSDA,, using a weighting scheme so that the class
pairs with small between-class distances can be well
separated.

« Taking advantage of the four-dimensional structure of the
quaternions, 2D-QSDA and 2D-QSDA,, can efficiently
extract features from RGB and RGB-D images. The
effectiveness and the generalization ability of 2D-QSDA
and 2D-QSDA,, are verified by the applications of color
and 3D face recognition.

Please note that the proposed 2D-QSDA has a preliminary
conference version [25]. In this journal paper, we have made
significant improvements in algorithm design, theoretical anal-
ysis, and experimental verification. These will be elaborated
in the main body of this paper. To improve the separability of
2D-QSDA, we further propose 2D-QSDA.,, using the weighted
pairwise between-class distances. Although 2D-QSDA and
2D-QSDA,, follow the same basic optimization strategy with
our previous work [26], they have completely different objec-
tive functions. Thus, different methods should be developed
to formulate their objective functions into regression models.
Accordingly, the equivalence between the optimization models
and the corresponding regression models should be carefully
established. Detailed comparisons with [26] will be provided
in Sections III-A and VI-A.

In the rest of this paper, Section II presents the background
knowledge. Section III proposes 2D-QSDA and its solution.
The model of 2D-QSDA,, is introduced in Section IV. The
effectiveness of 2D-QSDA and 2D-QSDA, is examined in
Section V. Then we compare 2D-QSDA with the state-of-the-
art quaternion-based models in Section VI. Finally, conclu-
sions are drawn in Section VII.

II. PRELIMINARIES

In this section, we briefly review the quaternion background
and several discriminant analysis methods. To clarify the state-
ments, some frequently-used notations are listed in TABLE 1.
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TABLE I: Summary of notations.

Notation\ Description ‘

a, a, A scalars, vectors, and matrices in
real space (R) or complex space (C)

a, a, A scalars, vectors, and matrices in
quaternion space ()

(), ()T, | conjugate, transpose

()* transpose conjugate

(1! inverse of a matrix

Tr(-) trace of a matrix

Re() real part of a variable

A. Quaternion Fundamental

The quaternions are a hyper-complex number system that
extends the complex number system [27]. A quaternion num-
ber (¢ € H) is composed of one real part and three imaginary
parts, and is generally represented as

G =qo0+ qit + q27 + g3k, (D

with real coefficients qo, q1, g2, ¢3 and an ordered basis
{1,4,j,k}. The addition of quaternions follows that in real
space, and the multiplication of quaternions is defined by

i2 =42 = k% = ijk = 1. 2

ij=—ji=k, jk=—kj=1i, ki=—ik=]j. 3)

The above rules make the multiplication of two quaternion
numbers non-commutative and this complicates the process-
ing of quaternions. Besides, the conjugate and norm of a
quaternion number are defined as ¢ = qo — 17 — q2j — g3k
and || = V44 = Vig = \/a2 + ¢ + ¢2 + 42, respectively. Note
that the basis operators for complex vectors and matrices
hold for quaternion vectors and matrices, e.g., the conjugate,
transpose, and conjugate transpose. To formulate objective
functions in quaternion domain, the norms of quaternion
vectors and matrices are used as measurements. The /;-norm of

q = (¢s) € H™ is defined as ||¢||; = inj lgs|, where s =1,---,m
is a position index, and the F-nosrjll of Q = (¢s) € H™X"
is defined by Qllr = (3 3 ldsal)? = [Tr(Q*Q)]%, where
s=1,---,mand t =1,- -S-:,Irfzz;re the row and column indices
respectively.

One of the effective approaches to process quaternion ma-
trices is to convert them into pairs of complex matrices [27].
Let Q = Qo+ Qpj € H™*™ be the Cayley-Dickson construction
of Q, where Q = Qo + Qi1i + Q25 + Qsk, Qo = Qo + Q1i, and
Q, = Q2 + Qsi. The complex adjoint form [27] uniquely
determines Q using (Qa, Q) as

Qa Qb
Lo | e = 4

XQ |:_Qb Qa:| ( )
where Xq € c2mx2n and Q and Xq are isomorphic [27]. This
transformation has been widely used for quaternion matrix
analysis, e.g., QED [27].

B. LDA and Its Variants

1) LDA and 2D-LDA: LDA [1] and 2D-LDA [7] seek opti-
mal projection bases, denoted by the columns of V, to project
input samples into low-dimensional subspace. In this subspace,
the ratio of between-class scatter and within-class scatter is
maximized. Let P, and P, represent the between-class and
within-class scatters, and S, and S., denote the between-class
and within-class covariance matrices of the input samples.
Projecting samples into the low-dimensional subspace, the
scatters of the projected samples can be evaluated by the
traces of the corresponding matrices, i.e., P, = Tr(VTS,V)
and P, = Tr(VTS, V). The goals of LDA and 2D-LDA are to
maximize the ratio %. There is no closed-form solution of
the optimal V. Instead, the trace ratio problem is simplified
to a more tractable ratio trace problem [23], which can be
efficiently solved via generalized eigen-decomposition.

2) ODA: QDA [18] incorporates the quaternion represen-
tation into discriminant analysis to preserve the high order
cross-channel correlation of color images. Suppose there are
images from c classes and the ith class has h; samples, xg
represents the jth vectorized quaternion sample from the ith
class, and the mean quaternion sample of the ith class is
denoted by ¥ = ;L 574 | %I, then §, = 07, hi(%! — %) (%' —%)*
represents the between-class variance of the input samples. Let
the columns of V be the quaternion projection basis of QDA.
QDA seeks an optimal basis that maximizes the between-class
scatter (P,) in the projected subspace

max P, = max (Tr(V*$;V)). 5)
v v

The solution of Eq. (5) equals to the leading eigenvectors of
S;. Note that QDA optimizes only the trace function instead of
the trace ratio function. Besides, according to the properties
of the quaternion functions ( [28], TABLE 1), QDA holds
either left or right linearity. Technically, it should be named
quaternion left/right linear discriminant analysis. In both [18]
and our work, we bypass the “left/right linear” for simplicity.

III. 2D-QSDA

QDA uses quaternion vectors to represent color images and
shows performance enhancement over the configurations of
independently processing different image channels or concate-
nating these image channels [18]. However, it fails to preserve
the spatial structure of color images, endures high computation
cost of processing high-dimensional vectors, and ignores the
within-class scatter of the projected samples. Besides, QDA
is easily influenced by noise and are not robust to classify
the out-of-sample data which are unseen during the training
phase (e.g., occluded testing images). We propose 2D-QSDA
to solve the above problems.

A. Model of 2D-QSDA

To preserve the spatial structure of images, we directly cope
with 2D quaternion matrices. Specifically, let X} (i =1,--- ,¢)
be the jth quaternion image matrix with class label i and h;
represent the number of samples in the ith class. We use Xi =

1

Ayl Xiand X = 157¢_, X7 to represent the mean sample
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of the ith class and that of all images respectively. Let S, =
iy ha(X = X) (X = X)* and S, = S5, S0 (X - X (X -
X*)* represent the between-class and within-class covariance
matrices, and Vs = [vq1,---,Vvei] be the basis of 2D-QSDA.
The projection scatters are calculated as P, = Tr(V*S,V,) and
w = Tr(V*S,, V). Incorporating the within-class scatter and
the sparsity constraints into the objective of 2D-QSDA, we
formulate it as a constrained trace ratio problem

Tr(VE$, V)

max ——— (6)
Vs Tr(ViSwVs)
subject to  card(Vs;) <w, for j=1,---,k,

where card(:) denotes the cardinality (i.e., the number of non-
zero elements) of the basis, which can be measured via the
lo-norm. For different values of the tuning parameter w, Eq. (6)
yields adjustable levels of sparsity on the basis of 2D-QSDA.

There is no closed-form solution for the constrained trace
ratio problem in Eq. (6). We therefore transform it into a
constrained ratio difference problem. Considering the fact that
the sparsity constraints are used to control the cardinality of
the basis and not to alter the objective function, we propose
a novel quaternion sparse regression (QSR) model that is
equivalent to the constrained ratio difference form to find a
numerical solution of 2D-QSDA. The QSR model of 2D-
QSDA is presented as follows.

Theorem 1. Let Q = S, — uS, and its quaternion eigen-
decomposition be 2 = RAR*, and Vs = [Va1,--- , Vo] be the
solution of Eq. (6). Let 3 = R+/[ A [R*. For any X» > 0 and
M >0 =1,k if A=[a,--,a] € H"*F and B =
[by,---,by] € H™¥k satisfy
k
2111131 (IR™*2 - AB*3|% + X[ B|% + Zl Albsll) (D)
, =
subject to A*A =1y,
where R=* = (R™1)*, then v,; =
j=1,-,k

b, .
ﬁ for appropriate )\ ;,
jll2

By constructing €2 = S, — uS.,, we transform the trace ratio
problem into a trace difference form. The sparsity constraints
in Eq. (6) and the sparse regularization terms in Eq. (7) are
used to control the cardinality of v,; and b; respectively at
the expense of slightly decreasing the objective functions. We
prove that b; is proportional to v,; without sparse regular-
ization (see APPENDIX). Essentially, Theorem 1 makes a
compromise between the class separability and the sparsity
of the projection basis.

It is noteworthy that: 1) without sparsity constraints, the
trace ratio problem can be solved by iteratively updating the
value of  since it is monotonously increasing [23]. However,
due to regularization, the monotonicity is destroyed. Instead,
we tune the value of u to approximate the optimal value; 2)
in Eq. (7), the sparsity of the basis of 2D-QSDA is controlled
via the values of parameter \; ; and the /;-norm measurement
since it is the tightest convex relaxation of the lo-norm [29].
The detailed settings of model parameters will be introduced
in Section V-B.

Remark: 1t is infeasible to optimize Eq. (6) using existing

methods, and the strategy in our previous work [26] is not
applicable as it is designed for a single objective based on
the fact that maximizing the scatter of all projected samples
equals to minimizing the sum of reconstruction errors [30]. We
therefore propose Theorem 1 to optimize Eq. (6) that takes
the form of maximizing a constrained trace ratio problem,
in which two partially coupled objectives (i.e., between-class
and within-class scatters) are simultaneously optimized. In
this respect, our QSR model Eq. (7) is completely different
from that in [26] as the former is formulated by encodes two
partially coupled measures, while the latter directly copes with
image samples.

B. Solution of 2D-QSDA

Due to the complicated structure of quaternions, it is diffi-
cult to directly solve the problem in Eq. (7). Existing works
convert the quaternion-valued problems to either the real space
[16] or the complex space [26], [27] for efficient optimization.
In this work, the complex space is adopted since the quaternion
matrices and their complex adjoint forms are isomorphic [27].
In the following, we convert Eq. (7) into a complex form,
extract the complex-valued solution, and then recover the
quaternion-valued solution from the complex-valued one.

The two F-norm terms in Eq. (7) can be transformed into
the complex space by adopting the complex adjoint forms of
the quaternion matrices as (see APPENDIX)

2(|JR™*% — AB*3|% + A2 Bl|%) ¥
=lIxg-+Xs — XaXp-XsllF + Xa2lxg I3

LetR =xgx, & =x5,A = x4, B=xg, and @ = =x*, where
the columns of A and B are [aj,---,as] and [by,--- , bag].
Eq. (8) can be rewritten as

Tr(RT*QR ™) —2Re[Tr(A*R™*QB)] + Tr[B* (2 + \2I)B]. (9)

The & l;-norm terms in Eq. (7) can be reformulated using
the operator ¢£(-) given in Definition 1.

Definition 1. Let q = q,+qpj € H™ and q be the first column
of xg, i.e., a=x4(;,1) = [aa; —Gp) € C?™. &(q) is defined as

() =[al;af ] e CP¥m.
The 1;-norm of ¢ equals to the I> ;-norm of the matrix ¢(q):
llall = lg(@)ll2,1,
where [Mil21 = 3 [M(:.j)le-

According toJEq. (4), the complex adjoint form has a
redundant structure. Hence, to recover a matrix in the complex
adjoint form, we need to calculate only the first half columns
and then infer the other half columns from the previous ones.
Then 2D-QSDA can be reformulated into a complex form

min {Tr(RT*QR™!) — 2Re[Tr(A*R™*QB)]+

k.
TrB* (2 + AD)B] +2 ) A jllé(by)2,1}
j=1

(10)

subject to A*A = I.
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There is no closed-form solution for Eq. (10) since variables
A and B are coupled and it is intractable to simultaneously
update A and B. We develop an alternating minimization
algorithm to iteratively learn their optimums. The iterative
scheme is described as follows.

1. Update A for fixed B. Given B, the minimization of
Eq. (10) is equivalent to

Re[Tr(A*R™*QB)] (11D

max
A
subject to A*A = I,

which reduces to the orthogonal Procrustes problem in the
complex domain [31]. Let C = R=*QB and its singular value
decomposition be U.D.V.. Then A = U.V..

2. Update B for fixed A. Given A, Eq. (10) equals to
k
mBin{Zl[b}f(ﬂH\zI)bj*2R€(a}fR**9bj)+A1,jHé(bj)Hz,ﬂ} (12)
i=
Thus, B can be optimized via k independent group Lasso
problems. Specifically, b, is solved by optimizing
Tin [b} (2 + X2I)b; — 2Re(ajR™"02b;) + A1 5[1€(b;)]l2,1].  (13)
Since Eq. (13) does not have a closed-form solution, we
rewrite it into the following constrained optimization problem
by applying variable-splitting [32] to b; and introducing an
auxiliary variable z

H];in [b;F (Q+ )\QI)b]’ — 2Re(a§R_*ﬂb]~) + )\LJ'”ZHQJ] (14)
J

subject to Z = ¢(b,).

We devise a novel algorithm under the framework of com-
plex ADMM [33] to solve Eq. (14). Let ¢~1(.) be the inverse
operator of £(-). According to Definition 1, ¢=1(-) converts a
matrix of size 2xm into a vector of size 2m x 1. The augmented
Lagrangian function of Eq. (14) is

L(bj7 Z,y) Zb; (Q + )\QI)bj — 2Re(a;R7*ij) + /\LjHZ”Q,l
+Re(y"[bj — € @) + Slb; —¢ @B (15)

where y is the Lagrangian multiplier and p > 0 is the
penalty parameter. To solve L(bj;,Z,y), we iteratively update
b;, Z, and y while the other two variables are fixed. More
specifically, given the rth update, the (r + 1)th iteration to
optimize L(b;,Z,y) is presented as follows.

« Update b7 by minimizing Z w.r.t b;, which reduces to
rréin {b; (2 + A2I)b; — 2Re(a;R™"02b;)
+ Re(y*[b; —£71(2)]) + gHbj - @)y, (16)

The solution of Eq. (16) is determined by setting the
derivation of L w.r.t b; to zero. Thus, b; can be written
explicitly as

byt = [Q+ (A2 + )T QR a4+ p¢H(ZT) —y7]. (17)

o Update Z"*! by minimizing L w.r.t Z. The optimization

5
of L equals to
P _
min {EIIbJ-Jrl - 23
+ Re(y*[b] " —¢71(2))) + A1 jl|Zll2,0 )} (18)
1 T AL,
= min {5I|£_1(Z) - (] "+ Y13+ 222 )Z)j2,1}
P p

— 7 — T+1 Y \2 J 17 )
min {|1Z —&(b; ™" + p M + e 1Zll2,1}

Eq. (18) can be solved using Lemma 1, which is derived
according to the optimization of the group Lasso problem
[32], [33].

Lemma 1. If a problem considering Z € C is to find

1
min {712~ T||% + ol Z2.1}-

The optimal Z satifies
Z(:,i) = {WT(W% TG, )2 > o
0, otherwise.
o Update y™*! as
yH = yT +p[b;+l _ ez (19)

The above procedures to optimize b, are summarized in
Algorithm 1.

Algorithm 1: Complex ADMM for computing b,

Input : Q, aj, AQ, and )\17]‘.
Output: Optimal b;.
1 Convert Eq. (13) into a constrained problem Eq. (14), and
construct the augmented Lagrangian function as Eq. (15).
2 Initialize b? =0,72°=0, yO =0, and p.
3 repeat
4 Update b;“ using Eq. (17).
5 Update Z7*! using Eq. (18).
6 Update y™ ' using Eq. (19).
7 until convergence;
8 Output b7 .

Once b; (j = 1,---,k) is optimized, we can obtain the
optimal by ; from b; according to the structure of the complex
adjoint form. This way, the current optimal B is obtained. The
alternating minimization algorithm for Eq. (10) continues until
the stopping criteria is satisfied. Afterward, we convert this
complex-valued solution into a quaternion-valued one using
v(-) in Definition 2. Note that this operator is also the one that
is used to recover the eigen/singular vectors of a quaternion
matrix from those of its complex adjoint matrix [34].

Definition 2. Let ¢ = [c1, -
Define an operator ~(-) as

yCm,y, Cm41," " 702m]T; c € (C2m«

v(c) = [c1,¢2,++ yem]T + [emt1, Cma2s - c2m) T4

where ~(c) € H™ is in the Cayley-Dickson form.

Subsequently, the solution of Eq. (7), Vs = [Vs1, -, Vil
can be recovered from the optimal columns of B as v,; =
7(Hl:)ﬁ)’ j = 1,---,k. Finally, Algorithm 2 summarizes the
detail procedures of 2D-QSDA.
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Algorithm 2: 2D-QSDA

Input : Training set {Xi}?:l, the dimension k, and
parameters Az, A1, 7 =1,--- k.
Output: Optimal basis [Vs1,- -, Vsr].
1 Reformulate 2D-QSDA into its complex form, namely, to find
A = [al,--- ,agk] and B = [bl,'” ,ka].
2 Initialize B.
3 repeat

4 (1) Update A for fixed B by solving the orthogonal
Procrustes problem in the complex space (Eq. (11)).

5 (2) Update B for fixed A.

6 for j=1,--- k, do

7 | Compute b, using Algorithm 1.

8 end

9 for j=k+1,---,2k, do

10 \ Derive b; from b;_j.

11 end

12 until convergence;
13 for j=1,--- k, do

. b;
14 ‘ Recover Vs; as ¥(qp 7, )-
J

15 end

16 Output [V, -+, V).

C. Discussion

In this section, we examine the following issues to provide
a comprehensive understanding of 2D-QSDA.

1) Optimal Conditions and Stopping Criterion: Essentially,
2D-QSDA involves a nested iterative scheme. The outer itera-
tion can start with any B*B = I,;. To improve the convergence
speed, we set B to the complex adjoint form of the leading
eigenvectors of . Let ||b; ||z be the residual of the jth column
of B. The stopping criterion of the outer iteration is that all
column residuals are small enough, i.e., ||b,|2 < e°ute", where
eouter ig the tolerance and is fixed to 10~3 in our experiments.

As to the inner iteration, it is designed under the complex
ADMM framework to compute b; with the group Lasso

penalty. Let the primal residual rf' = bI+! — ¢=1(z7+1)
and the dual variable residual ]} = p(Z"*t! — z7). The

optimal condition for the ADMM problem is that the residuals
approach zero as the iteration proceeds [33]. In practice, this
is achieved by setting the tolerances of the residuals to be
small numbers. We empirically set the stopping criterion to
||r;:;1||2 < P and ||r;;rall||p < gdual where Pt = gdual = 1073,

2) Fast Complex ADMM with A Continuation Scheme: In
ADMM, the choice of the penalty parameter p requires some
precise tuning since it is crucial to the convergence behavior of
the algorithm and also has a significant impact on the stability
of the performance [35].

In this work, we modify the original complex ADMM al-
gorithm by employing a continuation scheme [35], in which p
is adapted according to the primal and dual variable residuals.
The continuation scheme is defined as

Vi'rLc‘l"pT7 lf HT;;—T'LHZ > .‘J'”T:i—ual”F
+1 _ i
pTn = e vieer, i e, lle > pllrg e 20
o otherwise

where p, viner, pdeer > 1 are pre-defined parameters. The
idea behind this continuation scheme is to keep the relative

magnitudes of the primal and dual residuals within a factor p
such that the residuals converge to zero simultaneously. We set
u =10 and v*"em = pdeer = 2 as recommended in the literature.

The strengths of this continuation scheme lie in two folds:
1) the convergence behavior of the complex ADMM algorithm
is more robust compared with a precise tuned p, and 2) the
computation cost of the complex ADMM algorithm is greatly
reduced since less iterations are needed [35]. These two ad-
vantages will be experimentally demonstrated in the following
Section III-C3. With the continuation scheme, Algorithm 1 is
now extended to Algorithm 3.

Algorithm 3: Fast complex ADMM with a continuation
scheme
Input : Q, a;, A2, A1 j, eP™ and e
Output: Optimal b;.
1 Convert Eq. (13) to a constrained problem Eq. (14), and
construct the augmented Lagrangian function as Eq. (15).
2 Initialize b? =0,7Z°=0, yO =0, and po =103
3 repeat
4 Update b;“ using Eq. (17).
5 Update Z" 1! using Eq. (18).
6 Compute 775" and 777},
7 Update y™ ! using Eq. (19).
8
9

dual

Adjust p™ ! using Eq. (20).
until |\r;—$1“2 < e and ||[rith e < et

T+1
10 Output b7™".

3) Convergence Analysis: According to Eq. (10), 2D-
QSDA converges to an optimum as long as the £ independent
group Lasso problems Eq. (12) converge. As shown in Fig. 1
(a), the outer iteration converges within 10 iterations.

For the inner iteration, the theoretical convergence of the
complex ADMM algorithm for separable convex optimization
was established in [33]. However, Eq. (12) is non-convex and
the theoretical proof on its convergence is still an ongoing
work. Following [33], we give the empirical convergence
analysis. In this example, two color images (32*%32 pixels)
are chosen as the representations of two classes. Only one
discriminant projection vector (denote its corresponding com-
plex form as b;) can be learned from the training images, and
we set the non-zero elements in this basis vector to four. As
shown in Figs. 1 (b) and (c), if p is set to 0.001, the primal
residual decreases slowly and Algorithm 1 cannot converge;
meanwhile, Algorithm 1 achieves acceptable residuals within
hundreds of iterations when p = 0.1. This verifies the impor-
tance of choosing an appropriate p.

Adopting Algorithm 3, we plot the residuals of the primal
and dual variables with different initial values of p in Figs. 1
(d) and (e). Compared to the results from Algorithm 1, two
observations can be made: 1) the convergence behavior of
Algorithm 3 is relatively independent from the initial value
of p; 2) Algorithm 3 converges within dozens of iterations,
and thus markedly improves the computation efficiency.

4) Computation Complexity: We examine the computation
cost of 2D-QSDA as: 1) the construction of S, S,, and
costs operations of order ©(hnm?), and to obtain R and 3, the
decomposition needs O(m?3) operations; 2) reformulating the
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Fig. 1: Empirical convergence of 2D-QSDA: (a) outer iteration; (b)
inner iteration with fixed p = 0.001; (c) inner iteration with fixed
p = 0.1; (d) inner iteration with adaptive p and po = 0.001; (e)
inner iteration with adaptive p and pg = 0.1.

optimization problem into a complex form is in linear order;
3) in each iteration of Algorithm 3:

« for A-update, the orthogonal Procrustes problem needs to
be solved with O(m?) operations.

« for B-update, k£ basis vectors (b;,j = 1,---,k) are op-
timized individually under the complex ADMM frame-
work, which is composed of four iterative steps as

i) updating b;. The most expensive cost is the matrix
inverse operation with order O(m?3).

ii) updating Z. The Z-update is composed of calcu-
lating the column-wise Iz-norm and applying soft-
thresholding at the cost of O(m).

iii) updating y. The computation cost is O(m).

iv) adjusting p. The complexity is O(m).

Suppose the number of iterations of Algorithm 3 is Ty, it
can be carried out at the cost of O(Tym3). Then, the cost for
B-update will be O(kTym?3). The cost of A-update is negligible
compared to that of B-update. Let the number of iterations in
Algorithm 2 be 7». The total computation cost of 2D-QSDA
is O(hnm? + kTyTam3).

e
 Class 1 -
* Class 2

Class 3
® Class 4.
© Class5,

e
* Class 1 -
® Class 2

Class 3 .
* Class 4
* Class 5

G e s ERE TR TR S
(@ (b)

Fig. 2: Comparison of the separability of (a) 2D-QSDA and (b) 2D-
QSDA,,. (Stars represent the class centers.)

IV. 2D-QSDA.,, USING WEIGHTED PAIRWISE
BETWEEN-CLASS DISTANCES

The proposed 2D-QSDA is designed to maximize the
between-class scatter while minimizing the within-class scatter
with sparse constraints. Following the strategy in [24], we
rewrite the final between-class scatter of 2D-QSDA as the
mean scatter of all class pairs, i.e., Sy =31 i1 hihj(f(i—
XJ) (Xt — X7)*. That is, the between-class scatters of all class
pairs are equally weighted, the final between-class scatter is
thus dominated by large between-class scatters. However, the
underlying goal of discriminant analysis is to maximize the
between-class scatter of each class pair rather than separating
each class center from the total mean. From this respect,
maximizing small between-class scatters of class pairs is more
challenging since the class pairs with large between-class
scatters have already been well-separated.

We adopt a real-world dataset to illustrate this problem.
Specifically, the first five classes from the PIE database [36]
are selected with seven samples per class. We reshape the
samples into quaternion vectors and project them into a two-
dimensional subspace. As shown in Fig. 2 (a), Classes 1, 2,
and 5 are well-separated, and the distance between Classes 3
and 4 is small. This is because the final between-class scatter
is dominated by the large distances of class pairs, and hence,
the pairwise between-class distance of Classes 3 and 4 is
not maximized. Nevertheless, it is rather difficult to correctly
separate Classes 3 and 4.

To solve this limitation, we propose 2D-QSDA., to improve
the separability of 2D-QSDA using the weighted pairwise
between-class distances. The core idea of 2D-QSDA,, is to
set large weights to the small between-class distances and vice
verse. We define the weighting scheme of 2D-QSDA,, as

c—1 c _ _ _ _
Sp=>_ > wijhihy (X' —XI) (X" — X7)* 21
i=1j=i+1

where w; ; = a4 is the weight of the (i, j) class pair, 0 < a <
1 is a constant, and d; ; measures the between-class distance
of the (i,5) class pair. In the experiments, we empirically set
a = 0.5 and adopt the squared Euclidean distance to calculate
d; ;. As can be seen from Fig. 2 (b), adopting the weighting
scheme, 2D-QSDA,, finds a better subspace than 2D-QSDA
since it is much easier to separate Classes 3 and 4 in this
subspace.

After formulating the final between-class scatter of 2D-
QSDA,, using Eq. (21), 2D-QSDA,, is optimized following
the same strategy in 2D-QSDA.
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Fig. 3: Examples of color face images from: (a) AR, (b) Color
FERET, and (¢) CMU PIE.

V. EXPERIMENTS

2D-QSDA and 2D-QSDA,, are designed to extract sparse
discriminant features from the RGB and RGB-D images
while reducing the feature dimension. More importantly, they
exhibit good generalization ability to the unseen data due
to sparse constraints. Benefited from the intrinsic structure
of quaternion, 2D-QSDA and 2D-QSDA., provide a unified
approach to process RGB and RGB-D images and the ex-
tension from RGB images to RGB-D ones will not bring
extra computation burden. In addition, since the depth channel
contains complementary information to the color channels [9],
2D-QSDA and 2D-QSDA,, can well extract the discriminant
features by feeding the complementary data for performance
enhancement. In this section, we validate the effectiveness of
2D-QSDA and 2D-QSDA,, with applications of color and
3D face recognition. We introduce the databases and the
experiment settings in Sections V-A and V-B, respectively. The
performance of 2D-QSDA and 2D-QSDA,, is compared with
that of the state-of-the-arts in Sections V-C and V-D.

A. Databases

1) Color Face Databases: AR database contains 3276 color
face images of 126 individuals with different expressions,
illumination conditions, and occlusions. We employ a popular
subset of AR [37] in which color face images from 100
individuals are cropped.

Color FERET database [38] contains 14,126 color face
images of 1199 individuals. We collect a subset of FERET
that contains 265 subjects with expression variations (images
marked by “fa” and “fb”).

CMU PIE database [36] is composed of color face images
from 68 individuals. For each subject, face images with differ-
ent poses, illumination, expressions, and frames from a talking
sequence are recorded. We collect a subset (images captured
by “C27”) of CMU PIE. For each person, one neutral face
image, two face images with blinking and smiling expressions,
and four images from the talking sequence (frames labeled by
00, 19, 39, and 59) are selected.

2) 3D Face Databases: EURECOM Kinect database [39]
provides 3D face images of 52 subjects. The face images
are captured with different expressions, lighting conditions,
and occlusions. In our experiments, 728 3D face images with
frontal position are used.

IST-EURECOM light field face database (LFFD) [40] con-
tains 3D face images of 100 individuals taken in two sessions
with a temporal separation. Variations including emotions,
actions, poses, illuminations, and occlusions are captured in
each session for each subject. The face images are captured

Fig. 4: Examples of 3D face images from: (a) EURECOM, (b) LFFD,
and (c) UMB.

by a light field camera and then rendered into RGB and depth
images. All frontal images are involved for our experiments,
namely, 2800 3D face images are used in total.

UMB database [41] is a set of 3D face images of 126
persons with a particular focus on real-world occlusions, e.g.,
scarves, hats, hands. In our experiments, all persons that
associated with occlusion images of scarfs, hands, and hats
are selected, composing a subset of 882 3D images from 126
subjects.

In all experiments, the face images are aligned and cropped
to 32*32 pixels based on the location of the eyes.

B. Experiment Settings

1) Parameters for 2D-QSDA and 2D-QSDA.,: The QSR
models of 2D-QSDA and 2D-QSDA,, are given in Eq. (7). To
start with, ; controls the relative importance of the between-
class and within-class scatters, and it is tuned among the values
1073, 1072, -+, 103.

A2 is used to avoid the potential colinearity problem when
the number of training samples is far less than the input
dimension of samples [29]. We empirically set it to 10~3. Our
algorithm is robust to the choice of X, since we directly cope
with 2D quaternion matrices, and hence the number of samples
is generally larger than the number of processing dimensions.

A1,; controls the sparsity of the jth basis vector, and this
is implemented via column-wise soft-thresholding. According
to Eq. (18) and Lemma 1, the threshold is set to o = A
In practice, to relieve the burden of manually tuning A, ;, we
specify the cardinality w. More specifically, we sort the values
of |'T(:,4)||2 and save them to ts..¢ in a descending order. The
threshold o is set to the (w + 1)th element of tsor:. This way,
only w columns of T are retained, and thus exactly w non-zero
entries in the basis vector are preserved when converting back
into the quaternion space. For convenience, w is fixed for all
projection vectors and is chosen from 2,4, - ,32.

2) Competing Algorithms: 15 state-of-the-art peer algo-
rithms are used for comparison, including six unsupervised
methods (PCA-based) and eight supervised ones (LDA-based).
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The competing algorithms are PCA [2], 2D-PCA [42], 2D-
PCA-L1 [43], QPCA [12], MPCA [44], MSPCA [45], 2D-
QSPCA [26], LDA [1], 2D-LDA [7], 2D-LDA-L1 [19], QDA
[18], TDA [11], STDA [22], KDA [3], and IKDA [6].

Among them, PCA, LDA, KDA, and IKDA use vectorized
samples, while 2D-PCA, 2D-PCA-L1, 2D-LDA, and 2D-
LDA-L1 directly process 2D matrices. These algorithms are
designed for gray-scale images, and we extend them to process
RGB or RGB-D images by concatenating different image
channels. MPCA and MSPCA utilize the third-order tensors to
represent color or 3D face images. QPCA, QDA, 2D-QSDA,
and 2D-QSDA,, utilize the quaternion representation. Note
that QPCA and QDA cope with vectorized samples while 2D-
QSDA and 2D-QSDA,, directly process quaternion matrices.

Following the literature [10], [16], the R, G, and B channels
of color images are placed into the three imaginary parts
of the quaternion components. When being applied to RGB-
D images, we follow this convention to impose the color
channels into the imaginary parts, and thus the depth channel
is placed into the scalar part. In practice, we can arbitrarily
place the R, G, B, and D channels into the four quaternion
components since the advantage of quaternion representation is
to holistically explore the correlation among multiple channels
rather than the information from a particular channel [46].

3) Setups for Peer Algorithms: We first specify the projec-
tion dimension (k) of the competing algorithms. For PCA and
QPCA, & is individually selected from 10,20, 30, - - - , ind, where
ind = min(h, m * n), h is the total number of training samples,
and m = n is the size of the image matrices (m = n = 32
in our experiments); for LDA and QDA, & is selected from
10,20,30,--- ,c — 1, where ¢ is the total number of classes;
for MPCA, MSPCA, TDA, and STDA, their row (k.) and
column (k.) dimensions are denoted by k, = k., and they are
selected from 1,2, 3, - - - , 32, while the third dimension is chosen
from 1,2,3 for color face images and 1,2,3,4 for 3D face
images; for 2D-PCA, 2D-PCA-L1, 2D-LDA, and 2D-LDA-
L1, k is set to 2,4,---,32; for the kernel methods, i.e., KDA
and IKDA, we test all recommended parameters and record the
best performance. Considering the sparse algorithms, MSPCA
and STDA, the cardinality w is set to 2,4,---,32 and is fixed
for all basis vectors, as with 2D-QSDA and 2D-QSDA.,.

For all experiments in this work, the classification is based
on the nearest neighbor classifier with /;-norm distance. We
report the best recognition rates and the corresponding dimen-
sion of features for all competing algorithms.

C. Color Face Recognition

Color information is an important cue for face recognition,
and the high order cross-channel correlation should be consid-
ered to preserve the discriminant details of each specific class
[8]. Treating different color channels in a holistic way, 2D-
QSDA and 2D-QSDA,, show significant improvements over
the competing algorithms. Besides, 2D-QSDA,, consistently
outperforms 2D-QSDA, demonstrating the effectiveness of the
weighting scheme.

1) Performance on Clean Face Images: 2D-QSDA and 2D-
QSDA,, are compared to the state-of-the-arts on three color
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Fig. 5: Recognition rates on color face recognition with varying
portions of occlusions.

face databases. The results are detailed in TABLE II and are
summarized as:

« For the AR database, we test the performance of different
algorithms with variations over time. The clean color
face images in session one and session two are used for
training and testing, respectively. 2D-QSDA,, obtains the
highest recognition rate, followed by 2D-QSDA.

« On color FERET, the recognition performance over vary-
ing expressions is examined. Note that the training set
contains only one sample for each class, and hence the
competing algorithms may suffer from the small sample
size problem [29]. 2D-QSDA and 2D-QSDA,, obtain
consistently good performance because they essentially
work in the column direction of color images and thus
the number of samples is sufficient compared with the
number of feature dimensions. In addition, in Eq. (7),
setting X > 0 further improves the robustness of 2D-
QSDA and 2D-QSDA,, to the small sample size problem.

« On CMU PIE, similar to FERET, we impose a challenge
on face recognition with single training image per person.
In this test, the neutral color face images are used for
training and the rest images with expression and facial
action changes are used for testing. 2D-QSDA and 2D-
QSDA,, are superior to the other methods.

2) Performance on Partially Occluded Face Images: To
evaluate the generalization ability of different algorithms in
dealing with unseen data, we examine their robustness to both
real-world and synthetic occlusions that are not involved in
the training phase on the AR database.

« For real occlusions, the clean and natural-occluded face
images are used to construct the training and testing sets
respectively. According to TABLE III, 2D-QSDA,, and
2D-QSPCA obtain the highest recognition rate and 2D-
QSDA comes second in performance. This verifies the
good generalization ability of the sparse feature extraction
algorithms when the testing sets are contaminated.
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TABLE II: Experiment results on clean color face images.

PCA 2D-PCA 2D-PCA-L1 QPCA MPCA MSPCA 2D-QSPCA| LDA 2D-LDA 2D-LDA-L1 QDA TDA  STDA | KDA IKDA |2D-QSDA 2D-QSDA,,
AR e 0.7486 0.7957 0.7971  0.8142 0.7614 0.8357 0.8914 [0.8057 0.8257 0.7571 04571 0.8271 0.8443 |0.7971 0.8642| 0.8971 0.9043
dim| 300  96%20 96*24 150*%4 18*11%*3 20%20*%3 32*20*4 80 96+%32 76*32 160*4 28*28*3 28%28*2| - - 32%24%4  32%20%4
FERET %€ 0.7396 0.7434 0.7547  0.7094 0.7344  0.8438 0.8340 [0.7358 0.7461 0.8038  0.7358 0.7472 0.8604 |0.7547 0.7472| 0.8679 0.8830
dim| 260 96*4 96*4 190*4  9*6*3  5¥5%2  32*%12%4 | 260  96*32 96%12 190%4 24%24%2 28%28*2| - - 32%12%4  32%12%4
g %€ 0.5490 0.5735 0.5466  0.5123 0.5613 0.6520 0.7034  [0.5392 0.5490 0.6348  0.5123 0.5784 0.6863 |0.5098 0.5515| 0.7108 0.7230
dim| 40 96%4 96%4 60%4  9*F4*]  5¥4%] 32%4%4 40 96+28 96*8 60%4  8*F8*2  12¥12%2| - - 32%2%4 32%6%4

1. Bold number indicates the best performance, and italic bold number denotes the second best performance.
2. KDA and IKDA are kernel-based methods, and hence the best projection dimension cannot be reported.

TABLE III: Experiment results on natural-occluded color face images.

PCA 2D-PCA 2D-PCA-L1 QPCA MPCA MSPCA 2D-QSPCA| LDA 2D-LDA 2D-LDA-LI QDA TDA STDA | KDA IKDA |2D-QSDA 2D-QSDA,,
acc|0.3983 07575 07592 04575 0.5283 0.6667  0.8492 [0.6183 0.6233 02733 04250 0.6800 0.7275 [0.5291 0.5342| 0.8208  0.8492
AR gim| 300 96%28  96*20  190%4 18%9%3 28%28%2 32#20%4 | 100 96*32  96%24  150%4 20¥20%3 28%28%2| - - | 32720%4  32%20%4
TABLE 1V: Experiment results on clean 3D face images.
PCA 2D-PCA 2D-PCA-L1 QPCA MPCA MSPCA 2D-QSPCA| LDA 2D-LDA 2D-LDA-LI QDA TDA STDA | KDA IKDA |2D-QSDA 2D-QSDA,,
gy 96c|07740 07212 0.6971 05817 07740 08173 07788 |0.7885 07692 07404 05673 07644 07885 |0.7692 0.8029 | 0.6269  0.8365
dim| 200 128%¥20  128*12  150%4 11¥7%4 8¥7%3  32#8%4 | 40  128%*28  128%20  80*4 28%28%3 24¥24%3| - - | 32%24%4 32%20%4
LFFp “6C|0-5488 04788 04825 02525 0.5100 05388  0.5637 |0.5937 0.6012 04188 02325 06013 05025 |05713 0.6275 | 05963  0.6088
dim| 300 128%32  128*28  180*4 9*G*4 §¥7#2  32%8*4 | 120 128%32  128*24  110%4 32%32%4 24%24*3| - - | 32%20%4  32%16%4
ump 9Cc|0-8122 08122 08175 07831 08042 0.8413 07857 08122 07989 07857 07831 0.8214 0.8386 [0.7249 07143 | 08307  0.8466
dim| 120 128*4  128%*4  20%4 9¥6*3 8¥7¥2  32%12%4 | 100 128+*24  128%24  20%4 12%12%3 §*8*3 | - - 32%4%4  32%6%4
TABLE V: Experiment results on natural-occluded 3D face images.
PCA 2D-PCA 2D-PCA-LI QPCA MPCA MSPCA 2D-QSPCA| LDA 2D-LDA 2D-LDA-LI QDA TDA STDA | KDA IKDA |2D-QSDA 2D-QSDA,,
gy 96c|0-6635 06250 06218 01731 06763 07885 07532 |04230 04071 07789 02308 07372 08077 {06378 0.6699| 0.8718 0.8814
dim| 130 128%*24  128%¥32  70%4 13¥11%4 6%4%2  32%4*4 | 40  128%¥32  128%24  50%4 28%28*3 12¥12%#3| - - | 32¢16%4 32%12%4
LFFp c|0-6825 0.7483 07475 00750 06700 07558 07842 | 059 06325 06858 0.0775 07333 07917 |0.6475 0.7008| 0.8250 0.8333
dim| 280 128%16  128*16  150%4 O*7*3  7#4¥2  32%8¥4 | 80  128%32 12820  S0%4  8%8*4 24%24%3| - - | 32%28%4  32%24%4
ump 9CC|04127 05582 0.5556 02989 04497 05979 05675 04232 04523 03915 02857 04894 0.5106 [0.3439 04365 0.6058  0.6164
dim| 210 128%12  128*8  50%4 11¥7%3 4%4*]  32%8*%4 | 100 128%¥32  128%24  20%4 28%28*3 8*8*3 | - - | 32¢14¥4 32%18%4

« For synthetic occlusions, the clean color face images from
session one are used for training. We randomly add white-
and-black blocks on the clean face images from session
two to form the testing sets. The blocks are adjusted
into different sizes ranging from 10% to 60% of the size
of images. For each testing image, the random block is
imposed on a random position and then the whole testing
set is fixed to avoid the interference of randomness. As
shown in Fig. 5, 2D-QSDA,, and 2D-QSDA reach the
highest and the second highest recognition rates under all
experimental settings with 5%-10% improvements over
the best competing algorithms.

D. 3D Face Recognition

3D (RGB-D) face images contain more robust features
of a subject and thus offer more comprehensive represen-
tations. Incorporating the depth cue into traditional color
face recognition has led to improvements with comparison
to the usage of color face images alone [14]. 2D-QSDA
and 2D-QSDA.,, exploit the quaternion representation, which
intrinsically provide a way to encode the depth cue into the
real dimension. Therefore, 3D face recognition can be fulfilled

without extra computation cost. In this section, we evaluate the
performance of different algorithms under the circumstances
of 3D face recognition. In general, 2D-QSDA and 2D-QSDA.,
outperform or are comparable with the state-of-the-arts on
clean 3D face images and are more reliable and generalizable
to recognize 3D occluded face images. Besides, 2D-QSDA,,
obtains consistently improvements over 2D-QSDA.

1) Performance on Clean Face Images: The clean 3D
face images in EURECOM, LFFD, and UMB databases are
employed for experiments and the final results are presented in
TABLE IV. The detailed comparison is analyzed as follows.

o For EURECOM and LFFD, clean 3D face images from t-
wo sessions are used for training and testing, respectively.
2D-QSDA., and 2D-QSDA are the top two methods on
EURECOM; 2D-QSDA,, is the second-best-performing
method on LFFD, following IKDA.

On the UMB database, a single training image per person
is used to train optimal bases and the remaining face
images with different expressions and intensive lightness
changes compose the testing set. 2D-QSDA,, is the best-
performing method, followed by MSPCA.
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TABLE VI: Ablation study on different modules of 2D-QSDA.

Clean Occluded AR Occ AR Occ AR Occ AR Occ AR Occ AR Occ
AR AR =10% =20% =30% =40% =50% =60%
ID-SLDA |0.7514 0.5042 0.7114 0.6729 0.6600 0.5429 0.4886 0.3986
2D-SLDA |0.8414 0.6408 0.8029 0.7457 0.6986 0.6057 0.5271 0.4386
1D-QSDA [0.7886 0.5267 0.7600 0.7057 0.7071 0.6029 0.5357 0.4686
2D-QDA (0.8200 0.3933  0.7700 0.7300 0.6914 0.5929 0.5043 0.4029
2D-QSDA [0.8971 0.8208 0.9000 0.8986 0.8400 0.8214 0.7471 0.6529

2) Performance on Partially Occluded Face Images: We
also compare the performance of competing algorithms in
terms of their generalization ability by investigating their
robustness to occlusions. The EURECOM, LFFD, and UMB
databases are employed with all clean images for training and
the natural-occluded face images for testing. As reported in
TABLE V, 2D-QSDA,, and 2D-QSDA consistently achieve
the best and second-best performance and they outperform the
best peer algorithms by the margins of 4%-10%. This validates
the good generalization ability of 2D-QSDA and 2D-QSDA.,
in extracting features from RGB-D images.

To summarize: 1) 2D-QSDA and 2D-QSDA,, are compa-
rable with 2D-QSPCA on the RGB databases, and they show
advantages over their competitors in most cases; 2) on RGB-
D databases, 2D-QSDA,, and 2D-QSDA obtain consistently
the best and second-best performance, and they outperform
2D-QSPCA by the margins of 5%-17%. This observation
coincides with the fact that 2D-QSDA and 2D-QSDA,, can
naturally take advantage of the discriminant information as-
sociated with the complement of depth and color channels;
3) 2D-QSDA,, always outperforms 2D-QSDA since it pays
more attention to the challenging class pairs using a weighting
scheme.

E. Model Analysis

In this section, we present an in-depth study on the modules
of 2D-QSDA to advance the understanding of the mechanisms
behind 2D-QSDA. Similar observations can be made for 2D-
QSDA,, since it shares the same optimization strategy with
2D-QSDA.

1) Ablation Study: Firstly, we examine the ablation phe-
nomena associated with the modules of 2D-QSDA, i.e.,
quaternion representation, matrix-based processing, and sparse
regularization. The results on the AR dataset are shown in
TABLE VI. In general, the three modules of 2D-QSDA jointly
work to improve the performance of 2D-QSDA. Specifically,
1) comparing the performance of 1D-SLDA and 2D-SLDA to
that of 1D-QSDA and 2D-QSDA, we find that the quaternion
representation helps to improve the performance in both clean
and occluded images, and shows higher robustness to partial
occlusion; 2) comparing the recognition rates of 1D-SLDA and
1D-QSDA with those of 2D-SLDA and 2D-QSDA, matrix-
based processing shows more performance enhancements
when dealing with clean images; 3) we can also find that
the sparse regularization is highly beneficial to improve the
robustness to partial occlusion according to the performance
of 2D-QDA and 2D-QSDA.

2) Benefits from Sparse Regularization: We further explore
the benefits gained from sparse regularization as it is an
important module of 2D-QSDA. As shown in Fig. 6, the
influence of the sparsity level on the classification accuracy
is investigated with clean and partially-occluded images from
the AR database. The red dots indicate the best recognition
rates. As can be seen, 1) sparse regularization improves the
recognition accuracy, and 2) a relatively higher sparsity level
of the projection basis is required when being applied to
partially-occluded images.

Clean AR

AR Occ=20%

12

Dimension (*32) a4 Cardinality Dimension (32) a4

Cardinality

Fig. 6: Classification accuracy vs. cardinality and feature dimension.

The sparse regularization also provides a good interpreta-
tion for the basis vectors. Conceptually, 2D-QSDA works in
the column direction of images, and thus the basis vectors
maintain the discriminant information in the column space.
With sparsity constraints, the obtained basis vectors emphasize
the most important rows of images while ignoring the less
important ones. For illustration, we visualize the non-zero
entries in the first ten sparse basis vectors of 2D-QSDA trained
on AR in Fig. 7. In this example, the cardinality of each basis
vectors is fixed to eight. When projecting face images onto
these sparse basis vectors, only non-black regions are retained
and further considered in the subsequent processing. The non-
black regions indicate that the discriminant features selected
by 2D-QSDA are the informative parts of face images such as
eyes, chin, nose, mouth, and cheek, which coincide with the
discriminative parts reported in [47].

Fig. 7: Visualization of non-zero entries in the first ten sparse basis
vectors of 2D-QSDA.

VI. COMPARISON WITH EXISTING QUATERNION MODELS

To provide a comprehensive understanding of 2D-QSDA,
in this section, we compare 2D-QSDA with several newly
proposed quaternion-based image processing methods.

A. Comparison with 2D-QSPCA

Our previous work 2D-QSPCA [26] is relevant to this work
because they follow the same basic optimization strategy. But
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they are significantly different from the motivations, mathe-
matical formulations, and have different applicable conditions:
1) 2D-QSPCA is designed to reduce the dimension of input
samples while retaining the variation of the entire database
as much as possible. Meanwhile, 2D-QSDA does not focus
on preserving the common information of the whole database.
Instead, it pays close attention to the divergence of different
classes; 2) the objective of 2D-QSPCA is to maximize a
constrained trace function. On the other hand, 2D-QSDA is
constructed into a constrained trace ratio form, which is a
more complicated and general model in the field of dimension
reduction. Essentially, the objective of 2D-QSPCA falls into
a special case of the trace ratio problem where the numerator
equals the trace of an identity matrix; 3) since 2D-QSPCA
extracts the common structure from the whole database, when
being applied to process RGB-D images, it may lose the
complementary information from the color and depth channels
and thus suffer performance degradation. Meanwhile, 2D-
QSDA focuses on the separability of the projected samples,
and thus, can better utilize the complementary information.
To quantitatively show the properties of 2D-QSPCA and
2D-QSDA, we compare their separable ability in their corre-
sponding projected spaces. More specifically, the class com-
pactness and the separability of the projected samples are
simultaneously considered via the Dunn index (DI) [48]:

min; <;<;<c6(Ci, Cj)

DI = : (22)

maxi<p<c Ak

where c is the class number, C; and C; represent the ith and jth
classes, §(-) is the interclass distance metric, and A, measures
the compactness of the kth class. We extend the DI measure
into the quaternion domain by calculating the corresponding
quaternion distances. As verified in Fig. 8, 2D-QSDA has
higher DI values on all databases, which is consistent with
the motivation of discriminant analysis.

B. Comparison with QMMC, QSRC, and QPCANet

Due to the powerful representation ability in capturing the
high order cross-channel correlation, the quaternion algebra
has been well integrated with other real domain techniques
for color image processing [16], [49], [50].

A novel quaternion based maximum margin criterion
(QMMC) algorithm was proposed in [49] to extract the color
features and has shown advantages over the traditional QPCA
and QDA criteria for the task of classification. While effective,
QMMC transforms the color images into quaternion vectors,
and thus, the spatial structures may be destroyed. In addition,
QMMC cannot well process the unseen data since it exploits
the l;-norm as the measurement. Similar to QMMC, 2D-QSDA
also focuses on discriminant features. The difference lies in
the joint considering of the matrix-based operation, quaternion
representation, and sparse regularization, through which the
spatial and cross-channel structures of color images are well
preserved and the robustness of 2D-QSDA is ensured.

Inspired by the fact that sparse representation-based classi-
fication (SRC) has achieved great success in face recognition,
the work in [16] proposed quaternion-based SRC (QSRC). In
contrast to 2D-QSDA that aims to extract the low-dimensional

AR FERET
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Fig. 8: Comparison of the Dunn index of 2D-QSPCA and 2D-QSDA.

discriminant features from high-dimensional data, QSRC is
specialized for classification and it will not reduce the di-
mension of samples. Imposing sparse coefficients, QSRC is
robust to the naturally-occluded face images to a certain
degree. However, its performance is greatly decreased for
synthetic occlusions. This may come from the fact that the
distribution of the synthetic occlusions is too far away from
the clean images, and hence, it is very hard to obtain the
correct representation coefficients.

Nowadays, neural network-based models have witnessed
great performance improvement in many real-world applica-
tions. Taking advantage of the cascade architecture of the
network in extracting high-dimensional multi-scale features,
PCANet [51] devised a simple yet effective structure for
face recognition. To facilitate the processing of color images,
QPCANet [50] was proposed and has shown performance
enhancement. By contrast, 2D-QSDA is a statistical method
and is used to extract low-dimensional features.

The numerical comparison of the above-mentioned algo-
rithms is reported in TABLE VII. Generally, QMMC and
QSRC are not robust enough to the unseen data. Benefited
from the cascade network structure, QPCANet usually obtains
the best performance in recognizing clean face images and
the face images with small occlusions; meanwhile, 2D-QSDA
is more robust than QPCANet when the face images suffer
from a large portion of occlusions. This is derived from
the facts that: 1) the multi-layer high-dimensional features
extracted from QPCANet contain more rich information for
recognition, while they are prone to the over-fitting problem:;
2) the sparse regularization improves the generalization ability
of 2D-QSDA. Therefore, when being applied to images with
partial occlusions, 2D-QSDA shows competitive advantages.
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TABLE VII: Comparison of 2D-QSDA and other quaternion-based methods.

RGB databases RGB-D databases
AR FERET PIE Occluded AR Occ AR Occ AR Occ AR Occ AR Occ AR Occ EU LFFD UMB Occluded Occluded Occluded
AR =10% =20% =30% =40% =50% =60% EU LFFD UMB
QMMC | 0.6929 0.7434 0.5392 0.46 0.6771  0.5271 0.4143  0.2743  0.2071  0.1371 0.75 0.1725 0.7989 0.4615 0.2617 0.4127
QSRC 0.94 0.766 0.5 0.8492 0.5914  0.3286  0.1929 0.0543  0.0429 | 0.8173 0.7488 0.6905  0.8333 0.7308 0.4206
QPCANet | 0.96 09358 0.7451 0.9758 0.93 0.8743  0.8271 0.6386 0.4571 0.2371 | 09471 0.5788 0.76 0.9455 0.7407 0.7517
2D-QSDA | 0.8971 0.8679 0.7108 0.8208  0.9029 0.8986 0.84 0.8214 0.7471 0.6529 | 0.8269 0.5963 0.8307 0.8718 0.5974 0.825

——QCNN
——2D-QSDA

Accuracy

1 5 10 100 1000 5000
Training sample per class

Fig. 9: Comparison of QCNN and 2D-QSDA on CIFAR10.

TABLE VIII: Comparison of QCNN and 2D-QSDA.

AR FERET PIE
QCNN 0.8286 0.6264 0.5172
2D-0OSDA 0.8971 0.8679 0.7108

C. Comparison with QCNN

Though effective in classification, QPCANet uses only
simple operations to emulate the processing layers of convolu-
tional neural networks (CNN), and thus it may lose the optimal
representation ability of quaternion algebra in preserving the
cross-channel relationship. Recently, a novel quaternion CNN
[52] was proposed by re-designing the basic network modules
in quaternion domain, and it shows promising performance in
generic object recognition. We therefore compare the perfor-
mance of QCNN and 2D-QSDA on CIFAR10 [53] and several
color face databases. Please note that the data augmentation
operation in QCNN is turned off for fair comparison.

For CIFAR10, we use the first 1, 5, 10, 100, 1000, and
5000 images per subject in the training set for model training,
respectively. As shown in Fig. 9, QCNN achieves much
better performance when there are sufficient training samples,
while 2D-QSDA has advantages in dealing with the limited
training sample problem. This is because QCNN can learn
more discriminative features from massive training samples,
and its cascade network architecture is able to extract high-
dimensional multi-scale features that contain rich informa-
tion for recognition. Meanwhile, 2D-QSDA is a statistical
dimension reduction method that works in the column space
of images. Thus, a limited number of training samples per
subject is adequate to discover the statistics of the dataset. For
color face recognition, generally speaking, 2D-QSDA achieves
better performance than QCNN as recorded in TABLE VIII.

VII. CONCLUSION

In this paper, we developed 2D-QSDA and 2D-QSDA.,
to extract sparse discriminant features from RGB and RGB-
D images while reducing their dimensions. The constrained
trace ratio problems of 2D-QSDA and 2D-QSDA,, were first
transformed into constrained trace difference problems, and
then converted to flexible QSR models for optimization. To
solve the QSR models, we converted them into equivalent
complex forms, where the quaternion-valued sparse regular-
ization terms were transformed into the complex-valued group
Lasso penalties. We then designed a nested iterative algorithm
to optimize the complex-valued models. In each iteration, the
group Lasso problems were solved using a novel sub-algorithm
that was devised under complex ADMM. When being applied
to practical applications, 2D-QSDA and 2D-QSDA,, have
shown the enhanced performance on clean samples and the
robustness to the out-of-sample data that is unseen in the
training phase. Extensive experiments on color and 3D face
recognition verified the effectiveness and the generalization
ability of 2D-QSDA and 2D-QSDA.,,.

The proposed 2D-QSDA and 2D-QSDA,, exploit a nested
iterative optimization scheme, in which the complex ADMM
algorithm is involved. Nevertheless, the optimization proce-
dure is inefficient when the samples are of large-size since the
computation of complex ADMM is proportional to the cube
of the row numbers of images. Inspired by [54], our future
work will develop fast quaternion optimization algorithms.

VIII. APPENDIX

Proof: Without sparsity constraints, Eq. (6) reduces to
Tr(ViSyVs)

—s b (23)
Tr(ViSy,Vs)
or equivalently, a trace difference problem
max Tr(VIiSyVs) — uTr(ViSy,Vs) 24)
=max Tr(Vi(Sw — uSw)Vs),
Vs

where 1 = maxTr(VS,V,)/Tr(ViS,Vs) is the optimal ratio
of the between-class and within-class scatters, and the solution
of Eq. (24) equals to the leading eigenvectors of S, —uS.,. Also
note that © =S, — 1S, in Theorem 1.

To provide an efficient tool for quaternion analysis, the
properties of the complex adjoint form of the quaternion
matrix are reviewed in TABLE IX. Let the multiplication
and addition of quaternion matrices P and Q be compatible.
According to [27], we have
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TABLE IX: Properties of the complex adjoint form.

1. (le’)* = Xp~ '

2. (xp)~! =xp-1 if P71 exists

3 Xprg) = xe T Xq

4. xpg = XpXg

5. 2QII% = 21 (Q* Q) = lIxg 3 = Tr(xg-Xg)

Based on these properties, Eq. (7) can be transformed to
2(|R™*E — AB*3| % + A2(|BJI3)
= lIxg—xs — xaxg-xslF + Xallxg 5 (25)

Let R =xg, = =xs,A=x4, B=xy, where the columns
of A and B are [ay, - ,ag;] and [by, -+ ,bo]. Eq. (25) can be
rewritten as

Tr[(R™! — BA*)(R™*— AB*)XX*] 4+ A\ Tr(B*B). (26)
Let © = =%*. Eq. (26) can be further reduced to

Tr(R™*QR™!) — 2Re[Tr(A*R™*QB)] + Tr[B* (Q + A21)B]

2k
=Tr(R™QR™") + > b3 (2+ X2l)b; — 2Re(a}R™*Qb;). (27)
j=1

Given A, the optimal b, can be solved individually as

b; = (2 + XI) QR lay, (28)
or equivalently,
B=(Q+ X 'QRA. (29)
Substituting Eq. (29) to Eq. (27), we have
Tr{A*[R™*Q(Q + XI)"1QR 1A} (30)

With the orthonormal constraint, the optimal columns of A
are the leading eigenvectors of

RT'Q(Q+ XD QR

=RT*OQRIRTOQR! + D) 'RT*QR !, (31)

which equals to the leading eigenvector of R—*QR~!. Let the
eigen-decomposition of the Hermitian matrix R=*QR~! be
EDE* and E = [e1, - - , e3;] Where the columns of E are sorted
with their corresponding eigenvalues in a descending order.

Then, A = E, or equivalently, 4, = e; (j = 1,---,2k).
Substituting a; back into Eq. (28) gives
b; =(Q2+ XI)'QR a;
=R IRTOR ! + I IR TOR )a;
=R 'E(D + X\21) !E*EDE*a;
— % _p-ia, (32)
djj + Az

where d;; is the jth diagonal element of D.
Since R is a unitary matrix and R = Xg> We have R* =R~
From R—*QR~! = EDE* it follows that
Q=R*RT"QR" DR
=R*(EDE*)R

=(R'E)D(R'E)*. (33)
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According to Eqgs. (32) and (33), we know: 1) the optimal
columns of B are proportional to the columns of R~1A; 2)
the columns of R~'A = R~'E are the leading eigenvectors of
Q. That is, the optimal columns of B are proportional to the
leading eigenvectors of .

Recall that B = [by,--- ,bo] and Q are the complex adjoint
forms of B and € respectively, and the eigen-decomposition
of € can be fully recovered from that of € using operator ~(-)
in Definition 2 [34]. Thus, after the recover operation, b; is
proportional to the jth eigenvector of €, or equivalently, b; is
proportional to the optimal v;. [ ]
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